Bài giảng Cơ học ứng dụng - Tuần 6 - Nguyễn Duy Khương

Khoa Khoa Học Ứng Dụng Bài giảng Cơ Học Ứng Dụng - Tuần 6 10/4/2011 Giảng viên Nguyễn Duy Khương 1 CHƯƠNG 4 Ứng suất và biến dạng 3. Trạng thái ứng suất phẳng Ứng suất pháp lớn nhất ‐ Ứng suất chính Thành phần ứng suất pháp lớn nhất và nhỏ nhất, ta gọi đây là ứng suất chính. Để tìm thành phần ứng suất chính, ta lấy đạo hàm của x1 theo góc và cho đạo hàm này bằng không 2 tan 2 xyP x y     1 ( ) sin 2 2 cos 2 0x x y xy d d            Nên ta được: Với P là gó

pdf19 trang | Chia sẻ: Tài Huệ | Ngày: 19/02/2024 | Lượt xem: 36 | Lượt tải: 0download
Tóm tắt tài liệu Bài giảng Cơ học ứng dụng - Tuần 6 - Nguyễn Duy Khương, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
c chính. Từ công thức trên ta tính được hai giá trị P vì thế ta có hai góc chính. Một góc chính sẽ có một ứng suất chính lớn nhất và góc chính còn lại hơn kém 90o sẽ có ứng suất chính nhỏ nhất. Hai ứng suất chính này nằm trên hai mặt vuông góc nhau. CHƯƠNG 4 Ứng suất và biến dạng 3. Trạng thái ứng suất phẳng Và theo công thức trên và hệ thức lượng trong tam giác vuông ta được Vì thế ta được sin 2 xyP R   cos 2 2 x y P R    2 2 2 x y xyR        Thế công thức tính sin và cos vào công thức tính ứng suất pháp trên mặt nghiêng bất kỳ ta được 2 2 1 2 2 x y x y xy            Mà ta có điều kiện tổng ứng suất pháp trên hai mặt nghiêng bất kỳ là hằng số 2 2 1 2 2 1 2 2 x y x y x y x y xy                          Khoa Khoa Học Ứng Dụng Bài giảng Cơ Học Ứng Dụng - Tuần 6 10/4/2011 Giảng viên Nguyễn Duy Khương 2 CHƯƠNG 4 Ứng suất và biến dạng 3. Trạng thái ứng suất phẳng Nên ta được công thức tính ứng suất chính 2 2 1,2 2 2 x y x y xy            Ứng với góc chính 1 21 tan 2 xy P x y      Ứng với góc chính này, ta dễ dàng tính được ứng suất tiếp trên phương chính 0xyP  Vậy ứng suất pháp trên phương chính đạt giá trị lớn nhất và nhỏ nhất thì ứng suất tiếp trên phương chính bằng không. CHƯƠNG 4 Ứng suất và biến dạng 3. Trạng thái ứng suất phẳng Ứng suất đơn trục và song trục Trường hợp đặc biệt Mặt chính trong cả hai trường hợp này cũng chính là mặt vuông góc với trục x và y vì Đồng thời trên hai mặt x và y ta thấy rằng ứng suất tiếp bằng không. Vì thế thành phần ứng suất chính cũng bằng thành phần ứng suất đơn trục và song trục. 1 max( , )x y   2 min( , )x y   tan 2 0 0 ,90o oP P    Khoa Khoa Học Ứng Dụng Bài giảng Cơ Học Ứng Dụng - Tuần 6 10/4/2011 Giảng viên Nguyễn Duy Khương 3 CHƯƠNG 4 Ứng suất và biến dạng 3. Trạng thái ứng suất phẳng Ứng suất trượt thuần túy Góc chính: tan 2 45 ,135o oP P    Nếu ứng suất tiếp xy>0 thì 1 xy  2 xy   CHƯƠNG 4 Ứng suất và biến dạng 3. Trạng thái ứng suất phẳng Ứng suất tiếp lớn nhất Để tìm thành phần ứng suất tiếp lớn nhất và phương của nó, ta lấy đạo hàm của x1y1 theo góc  và cho đạo hàm này bằng không tan 2 2 x y S xy      1 1 ( ) cos 2 2 sin 2 0x y x y xy d d            Nên ta được: Với S là góc mà ứng suất tiếp trên mặt phẳng đó sẽ là lớn nhất. Từ công thức trên và công thức tính góc P ta thấy rằng 1tan 2 cot 2 tan 2S PP      cos(2 2 ) 0S P    45oS P    Khoa Khoa Học Ứng Dụng Bài giảng Cơ Học Ứng Dụng - Tuần 6 10/4/2011 Giảng viên Nguyễn Duy Khương 4 CHƯƠNG 4 Ứng suất và biến dạng 3. Trạng thái ứng suất phẳng Trên mặt có ứng suất tiếp lớn nhất dương 1 1 45oS P  1cos 2 xyS R   sin 2 2 x y S R     Nên ứng suất tiếp lớn nhất có giá trị 2 2 max 2 x y xy        Hoặc tính theo ứng suất chính 1 và 2 1 2 max 2    Ứng suất pháp trên mặt nghiêng này là 2 x y avg    CHƯƠNG 4 Ứng suất và biến dạng 3. Trạng thái ứng suất phẳng ĐIỀU QUAN TRỌNG CẦN NHỚ • Ứng suất chính được xem như là ứng suất pháp lớn nhất và nhỏ nhất tại một điểm. • Khi trạng thái ứng suất được biểu diễn là ứng suất chính thì không có ứng suất tiếp tác dụng lên phần tử. • Trạng thái ứng suất tại một điểm có thể được biểu diễn bằng ứng suất tiếp lớn nhất. Trong trường hợp này ứng suất pháp trung bình sẽ tác dụng lên phần tử. • Phần tử được biểu diễn dưới dạng ứng suất tiếp lớn nhất và ứng suất pháp trung bình thì sẽ hợp một góc 45o với phần tử biểu diễn dưới dạng ứng suất chính. Khoa Khoa Học Ứng Dụng Bài giảng Cơ Học Ứng Dụng - Tuần 6 10/4/2011 Giảng viên Nguyễn Duy Khương 5 CHƯƠNG 4 Ứng suất và biến dạng 3. Trạng thái ứng suất phẳng Ví dụ: Cho phân tố chịu trạng thái ứng suất như hình vẽ. a) Tìm phương chính. b) Tìm ứng suất chính. c) Tìm ứng suất tiếp lớn nhất và ứng suất pháp tương ứng. CHƯƠNG 4 Ứng suất và biến dạng 3. Trạng thái ứng suất phẳng Xác định các thành phần ứng suất 50 (MPa)x   Phân tố chịu ứng suất phẳng nên ta có ba thành phần ứng suất 10 (MPa)y   40 (MPa)xy   Theo công thức tính phương chính ta được Tìm phương chính 2 tan 2 xyP x y     2( 40) 80 50 ( 10) 60    26,6 và 116,6o oP  Tìm ứng suất chính 2 2 max,min 2 2 x y x y xy            2 220 (30) (40)   max min70 MPa và 30 MPa     Khoa Khoa Học Ứng Dụng Bài giảng Cơ Học Ứng Dụng - Tuần 6 10/4/2011 Giảng viên Nguyễn Duy Khương 6 CHƯƠNG 4 Ứng suất và biến dạng 3. Trạng thái ứng suất phẳng Tìm ứng suất tiếp lớn nhất 2 2 max 2 x y xy        Theo công thức tính ứng suất tiếp lớn nhất ta được 2 2(30) (40)  max 50 MPa  Hoặc ta có thể dùng công thức max min max 70 ( 30) 50 MPa 2 2        Công thức tính ứng suất pháp ' 2 x y avg      70 ( 30) 20 MPa 2    CHƯƠNG 4 Ứng suất và biến dạng 3. Trạng thái ứng suất phẳng Vòng tròn Mohr ứng suất Trong kỹ thuật, đôi khi ta muốn có được kết quả nhanh của ứng suất ở mặt nghiêng bất kỳ, ta có thể sử dụng vòng tròn Mohr ứng suất. Christian Otto Mohr  (1835‐1918) là kỹ sư xây dựng người Đức.  Có hai dạng vòng tròn Mohr ứng suất (trong tài liệu này dùng dạng 2: Dạng 1 là trục ứng suất tiếp hướng xuống, ứng với dạng này thì chiều dương của góc sẽ ngược chiều kim đồng hồ. Dạng 2 là trục ứng suất tiếp hướng lên, ứng với dạng này thì chiều dương của góc sẽ cùng chiều kim đồng hồ Khoa Khoa Học Ứng Dụng Bài giảng Cơ Học Ứng Dụng - Tuần 6 10/4/2011 Giảng viên Nguyễn Duy Khương 7 CHƯƠNG 4 Ứng suất và biến dạng 3. Trạng thái ứng suất phẳng Các bước xây dựng vòng tròn Mohr ứng suất: Bước 1 : Vẽ trục tọa độ - Vẽ trục  nằm ngang hướng qua phải, trục  thẳng đứng hướng lên trên. Bước 2 : Tìm tọa độ tâm C của vòng tròn Mohr Tâm vòng tròn C có tọa độ (avg , 0) với avg= (x +y)/2 Bước 3 : Tìm điểm P là điểm cực của vòng tròn Mohr Điểm cực P có tọa độ (y , xy) Bước 4 : Vẽ vòng tròn Mohr tâm C bán kính CP Chiều dương quy ước quay quanh điểm cực P là cùng chiều kim đồng hồ. Bán kính vòng tròn là 2 2 2 x y xyR        Bước 5 : Vẽ đường thẳng đi qua điểm cực P Từ P vẽ một đường thẳng nằm ngang làm đường chuẩn. Đường này cắt đường tròn tại điểm A, điểm này sẽ có tọa độ (x , xy). CHƯƠNG 4 Ứng suất và biến dạng 3. Trạng thái ứng suất phẳng Các xác định trạng thái ứng suất một điểm dùng vòng tròn Mohr • Ta cần xác định thành phần ứng suất trên mặt nghiêng có phương góc . Từ P ta kẽ đường thẳng hợp với phương ngang một góc  (chú ý chiều dương theo cùng chiều kim đồng hồ). Đường thẳng đó sẽ cắt vòng tròn tại một điểm. Điểm đó sẽ có tọa độ (x1 , x1y1) chính là trạng thái ứng suất của điểm trên mặt nghiêng . • Vòng tròn Mohr sẽ cắt trục  tại hai điểm, hai điểm này có ứng suất tiếp xy = 0. Vì thế hai điểm này là hai điểm ứng suất chính 1, 2. Nhận xét: • Tại vị trí  = max thì  = avg • Các tính chất về góc đều phù hợp với các công thức trên. Khoa Khoa Học Ứng Dụng Bài giảng Cơ Học Ứng Dụng - Tuần 6 10/4/2011 Giảng viên Nguyễn Duy Khương 8 CHƯƠNG 4 Ứng suất và biến dạng 3. Trạng thái ứng suất phẳng   C 2 x y avg    P y xy A x  x xy 1x  1 1x y B 1 1x y  1x  + Các bước xây dựng vòng tròn Mohr ứng suất: CHƯƠNG 4 Ứng suất và biến dạng 3. Trạng thái ứng suất phẳng   C 2 x y avg    P y xy A x x xy max 1 Những điểm đặc biệt trên vòng tròn Mohr 2 1P 1 2 2P avg max 1S min avg 2S Khoa Khoa Học Ứng Dụng Bài giảng Cơ Học Ứng Dụng - Tuần 6 10/4/2011 Giảng viên Nguyễn Duy Khương 9 CHƯƠNG 4 Ứng suất và biến dạng 3. Trạng thái ứng suất phẳng Ví dụ: Cho phân tố chịu trạng thái ứng suất như hình vẽ. Tìm phương chính, ứng suất chính, ứng suất tiếp cực đại và ứng suất pháp tương ứng bằng vòng tròn Morh CHƯƠNG 4 Ứng suất và biến dạng 3. Trạng thái ứng suất phẳng Xác định các thành phần ứng suất 50 (MPa)x   Phân tố chịu ứng suất phẳng nên ta có ba thành phần ứng suất 10 (MPa)y   40 (MPa)xy   Xác định tâm C của vòng tròn Morh Xác định điểm cực P của vòng tròn Morh 2 2 2 250 ( 10) (40) 50 2 2 x y xyR CP                  Tâm C có tọa độ (avg , 0) với 50 ( 10) 20 MPa2 2 x y avg        Điểm cực P có tọa độ (y , xy) = (-10 , 40) Xác định bán kính R=CP Dùng mối quan hệ hình học trên đường tròn, ta sẽ có được những kết quả cần thiết Khoa Khoa Học Ứng Dụng Bài giảng Cơ Học Ứng Dụng - Tuần 6 10/4/2011 Giảng viên Nguyễn Duy Khương 10 CHƯƠNG 4 Ứng suất và biến dạng 3. Trạng thái ứng suất phẳng   C P 50 MPa 40 MPa A 70 MPa 1P 12 P 40 30 1 40tan 2 30P   1 26,6 o P  CHƯƠNG 4 Ứng suất và biến dạng 3. Trạng thái ứng suất phẳng   C P 50 MPa 40 MPa A 60o 50AC  120o E 40 B D 40AB  40sin 50   53,13o    cos(120 )oCD CE   19,64 sin(120 )oDE CE   45,98 39,64E avg CD    45,98E DE    Kiểm tra lại bằng công thức !!! Tính ứng suất trên mặt nghiêng 60o bằng vòng tròn Mohr Khoa Khoa Học Ứng Dụng Bài giảng Cơ Học Ứng Dụng - Tuần 6 10/4/2011 Giảng viên Nguyễn Duy Khương 11 CHƯƠNG 4 Ứng suất và biến dạng 3. Trạng thái ứng suất phẳng Định luật Hooke cho trạng thái ứng suất tổng quát Giả thiết phân tố sử dụng vật liệu liên tục, đồng nhất, đẳng hướng. Quan hệ giữa biến dạng và ứng suất  1x x y zE          1y y x zE          1z z x yE         xy xy G   xz xz G   yz yz G   Với E là hệ sốmô‐đun đàn hồi,  là hệ số Poisson G là hệ sốmô‐đun trượt đàn hồi 2(1 ) EG   CHƯƠNG 4 Ứng suất và biến dạng 3. Trạng thái ứng suất phẳng Định luật Hooke cho trạng thái ứng suất phẳng Do trạng thái ứng suất phẳng nên z=0, xz=0, yz=0 1 x x yE         1 y y xE          z x yE     xy xy G   Với E là hệ sốmô‐đun đàn hồi,  là hệ số Poisson G là hệ sốmô‐đun trượt đàn hồi 2(1 ) EG   Khoa Khoa Học Ứng Dụng Bài giảng Cơ Học Ứng Dụng - Tuần 6 10/4/2011 Giảng viên Nguyễn Duy Khương 12 CHƯƠNG 4 Ứng suất và biến dạng 3. Trạng thái ứng suất phẳng Ví dụ: Cho phân tố chịu trạng thái ứng suất như hình vẽ biết E=2e3 MPa, =0,5. a) Tìm các thành phần biến dạng theo trục x, y, z b) Tìm các thành phần biến dạng theo phương 60o c) Tìm biến dạng trượt cực đại CHƯƠNG 4 Ứng suất và biến dạng 3. Trạng thái ứng suất phẳng 1 x x yE         1 y y xE          z x yE     xy xy G   Do trạng thái ứng suất phẳng nên z=0, xz=0, yz=0   451 50 0,3 ( 10) 2,65 102 10       50 (MPa)x   a) Phân tố chịu ứng suất phẳng nên ta có ba thành phần ứng suất 10 (MPa)y   40 (MPa)xy     451 10 0,3 50 1,25 102 10          550,3 50 ( 10) 6 102 10        440 5,2 10 76923    52 10 76923 MPa 2(1 ) 2(1 0,3) EG      Khoa Khoa Học Ứng Dụng Bài giảng Cơ Học Ứng Dụng - Tuần 6 10/4/2011 Giảng viên Nguyễn Duy Khương 13 CHƯƠNG 4 Ứng suất và biến dạng 3. Trạng thái ứng suất phẳng 1 1 1 1 x x yE         1 1 1 1 y y xE          1 1 1z x yE     1 1 1 1 x y x y G     451 39,64 0,3 (0,36) 1,98 102 10      1 39,64 MPax  b) Theo phương 60o ta có các thành phần ứng suất dựa vào vòng tròn Morh hoặc công thức tính ứng suất trên mặt nghiêng ta được 1 1 + 50 10 39,64 0,36 MPay x y x         1 1 45,98 MPax y     451 0,36 0,3 39,64 0,58 102 10         550,3 39,64 0,36 6 102 10       445,98 5,98 10 76923     CHƯƠNG 4 Ứng suất và biến dạng 3. Trạng thái ứng suất phẳng max max G   c) Biến dạng trượt lớn nhất sẽ tương ứng với ứng suất tiếp lớn nhất max 50 MPa  450 6,5 10 76923    Khoa Khoa Học Ứng Dụng Bài giảng Cơ Học Ứng Dụng - Tuần 6 10/4/2011 Giảng viên Nguyễn Duy Khương 14 CHƯƠNG 4 Ứng suất và biến dạng 4. Các thuyết bền Đường cong vật liệu thép trong thí nghiệm kéo CHƯƠNG 4 Ứng suất và biến dạng 4. Các thuyết bền Trong thí nghiệm kéo vật liệu, ta đang quan tâm đến miền đàn hồi. Để kết cấu vẫn còn hoạt động tốt thì kết cấu không được đạt đến giới hạn chảy của vật liệu. Giới hạn này ta gọi là giới hạn bền của vật liệu Ta cần tính toán sao cho ứng suất không vượt quá ứng suất cho phép (ứng suất chảy dẻo của vật liệu). Ứng suất cho phép ký hiệu [] và tìm từ thí nghiệm kéo của vật liệu. max [ ]  Ta gọi công thức trên là điều kiện bền của vật liệu Để đảm bảo vật thể làm việc an toàn, ứng suất lớn nhất của các điểm thuộc vật khảo sát phải thỏa mãn điều kiện: Khoa Khoa Học Ứng Dụng Bài giảng Cơ Học Ứng Dụng - Tuần 6 10/4/2011 Giảng viên Nguyễn Duy Khương 15 CHƯƠNG 4 Ứng suất và biến dạng 4. Các thuyết bền 1. Giả thuyết ứng suất tiếp lớn nhất Giả thuyết bền này còn có hai tên gọi khác là giả thuyết bền thứ III và giả thuyết bền Tresca. Theo giả thuyết này thì ứng suất tiếp là yếu tố quyết định sự phá hủy của vật liệu. Do vậy hai trạng thái ứng suất khác nhau sẽ có độ bền như nhay khi hai giá trị ứng suất tiếp lớn nhất bằng nhau. Công thức tính ứng suất tương đương ở trạng thái ứng suất tổng quát theo giả thuyết bền III là tdIII 1 2 2 3 1 3max( , , )          Henri Édouard Tresca (1814‐1885) là kỹ sư cơ khí người Pháp. Là cha đẻ của lĩnh vực biến dạng dẻo bằng nhiều thí nghiệm bắt đầu năm 1864. CHƯƠNG 4 Ứng suất và biến dạng 4. Các thuyết bền Ở trạng thái ứng suất phẳng Công thức tính ứng suất lớn nhất là : 2 2 max 2 x y xy        max min max 2   Hoặc Vậy ta sẽ có ứng suất tương đương theo giả thuyết bền III tdIII max2  Điều kiện bền theo giả thuyết bền III tdIII [ ]   2 24 [ ]x y xy       Hoặc max min [ ]    Khoa Khoa Học Ứng Dụng Bài giảng Cơ Học Ứng Dụng - Tuần 6 10/4/2011 Giảng viên Nguyễn Duy Khương 16 CHƯƠNG 4 Ứng suất và biến dạng 4. Các thuyết bền • Ứng suất đơn trục Trường hợp đặc biệt tdIII max2 x    Điều kiện bền [ ]x  • Ứng suất trượt thuần túy tdIII max2 2 xy    Điều kiện bền [ ] 2xy   • Ứng suất phẳng đặc biệt x x 2 2 tdIII 4x xy    Điều kiện bền 2 24 [ ]x xy    CHƯƠNG 4 Ứng suất và biến dạng 4. Các thuyết bền 2. Giả thuyết thế năng biến đổi hình dạng Giả thuyết bền này còn có tên gọi khác là giả thuyết năng lượng, giả thuyết bền thứ IV và giả thuyết bền Von‐Mises. Theo giả thuyết này thì yếu tố chủ yếu khiến vật bị phá hủy là phần năng lượng làm cho vật bị thay đổi về hình dáng. Công thức tính ứng suất tương đương ở trạng thái ứng suất tổng quát theo giả thuyết bền IV là      2 2 2tdIV 1 2 2 3 1 312              Richard Edler von Mises (1883‐1953) là nhà khoa học và toán học trong lĩnh vực cơ học vật rắn, cơ học lưu chất, khí động học Khoa Khoa Học Ứng Dụng Bài giảng Cơ Học Ứng Dụng - Tuần 6 10/4/2011 Giảng viên Nguyễn Duy Khương 17 CHƯƠNG 4 Ứng suất và biến dạng 4. Các thuyết bền Ở trạng thái ứng suất phẳng Ứng suất chính 2 2 tdIV 1 2 1 2       Ứng suất tương đương theo giả thuyết bền IV 2 2 1,2 2 2 x y x y xy            Điều kiện bền theo giả thuyết bền IV tdIV [ ]  2 2 1 2 1 2 [ ]        CHƯƠNG 4 Ứng suất và biến dạng 4. Các thuyết bền • Ứng suất đơn trục Trường hợp đặc biệt tdIV x  Điều kiện bền [ ]x  • Ứng suất trượt thuần túy tdIV 3 xy  Điều kiện bền 3 [ ]xy  • Ứng suất phẳng đặc biệt x x 2 2 tdIV 3x xy    Điều kiện bền 2 23 [ ]x xy    Khoa Khoa Học Ứng Dụng Bài giảng Cơ Học Ứng Dụng - Tuần 6 10/4/2011 Giảng viên Nguyễn Duy Khương 18 CHƯƠNG 4 Ứng suất và biến dạng 4. Các thuyết bền Ví dụ: Cho phân tố chịu trạng thái ứng suất như hình vẽ. a) Tìm ứng suất tương đương theo giả thuyết bền III. b) Tìm ứng suất tương đương theo giả thuyết bền IV. CHƯƠNG 4 Ứng suất và biến dạng 4. Các thuyết bền Tìm ứng suất tiếp lớn nhất 2 2 max 2 x y xy        Theo công thức tính ứng suất tiếp lớn nhất ta được 2 2(30) (40)  max 50 MPa  Ứng suất tương đương theo giả thuyết bền III Công thức tính ứng suất tương đương trong trạng thái ứng suất phẳng tdIII max2  2 50 100 MPa   Khoa Khoa Học Ứng Dụng Bài giảng Cơ Học Ứng Dụng - Tuần 6 10/4/2011 Giảng viên Nguyễn Duy Khương 19 CHƯƠNG 4 Ứng suất và biến dạng 4. Các thuyết bền Tìm ứng suất chính Theo công thức tính ứng suất chính ta được Ứng suất tương đương theo giả thuyết bền IV Công thức tính ứng suất tương đương trong trạng thái ứng suất phẳng 2 2 1,2 2 2 x y x y xy            2 220 (30) (40)   1 270 MPa và 30 MPa     2 2 tdIV 1 2 1 2          2270 30 70 30 88,88 MPa     

Các file đính kèm theo tài liệu này:

  • pdfbai_giang_co_hoc_ung_dung_tuan_6_nguyen_duy_khuong.pdf