NGHIÊN CỨU KHOA HỌC
54 Tạp chí Nghiên cứu khoa học, Trường Đại học Sao Đỏ, ISSN 1859-4190, Số 1 (68) 2020
Determining rotational mass coefficient 
for simulation of motion dynamic of vehicle
Xác định hệ số khối lượng quay phục vụ 
việc mô phỏng động lực học chuyển động của ôtô
Vu Thanh Trung, Ngo Thi My Binh
Email: vuthanhtrung286@gmail.com
Sao Do University 
Received date:19/02/2020 
Accepted date: 27/3/2020 
Published date: 30/3/2020
Abstract
The rotating mass coefficient (γ
m
)
                
              
                                            
                                
            
 
            
                
7 trang | 
Chia sẻ: huong20 | Lượt xem: 712 | Lượt tải: 0
              
            Tóm tắt tài liệu Y Xác định hệ số khối lượng quay phục vụ việc mô phỏng động lực học chuyển động của ô tô, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
 is a coefficient that takes into account the effect of rotating parts of the 
crankshaft mechanism and the drivetrain system on the driving dynamics of cars. The paper presents the 
results of the research to determine the rotation mass coefficient of Hyundai Starex by theory (based on 
the experimental data set of rotation details of the crankshaft mechanism, components of the drivetrain 
system and use of Inventor software) combined with experimentation (test vehicle on a roller test bed). 
The research results are used as input parameters for simulation models, calculating parameters for 
evaluating the quality of linear motion dynamics of Hyundai Starex cars.
Keywords: Moment of inertia; rotating mass coefficient; roller test platform (Chassis Dynamometer).
Túm tắt
Hệ số khối lượng quay (γ
m
) là hệ số kể đến ảnh hưởng của cỏc chi tiết chuyển động quay của cơ cấu 
khuỷu trục thanh truyền và hệ thống truyền lực đến động lực học chuyển động của ụtụ. Bài bỏo trỡnh bày 
kết quả nghiờn cứu xỏc định hệ số khối lượng quay của xe Hyundai Starex bằng lý thuyết (dựa trờn bộ dữ 
liệu đo thực nghiệm cỏc chi tiết chuyển động quay của cơ cấu khuỷu trục thanh truyền, cỏc bộ phận thuộc 
hệ thống truyền lực và sử dụng phần mềm Inventor) kết hợp với thực nghiệm (thử xe trờn bệ thử con lĕn). 
Kết quả nghiờn cứu được dựng làm thụng số đầu vào cho mụ hỡnh mụ phỏng, tớnh toỏn cỏc thụng số đỏnh 
giỏ chất lượng động lực học chuyển động thẳng của xe Hyundai Starex.
Từ khúa: Moment quỏn tớnh; hệ số khối lượng quay; bệ thử con lĕn (Chassis Dynamometer).
1. INTRODUCTION
The inertial force has a great influence on the 
linear motion of the vehicle when accelerating or 
decelerating. The inertial force consists of two 
components: The inertial force of linear motion and 
the inertial force of rotational motion. The inertial 
force of linear motion depends on the vehicle’s 
mass and its acceleration. Meanwhile, the inertial 
resistance of rotation is dependent on the moment 
of inertia and angular acceleration of all rotating 
parts starting from the transmission crankshaft of 
the engine to the active wheel of the vehicle.
To simplify the calculation of driving dynamics, 
rotation coefficient (γ
m
) is often used when 
considering the effect of rotational inertia drag 
[1, 2]. However, because the exact determination 
of rotational mass coefficient is quite complicated, 
some studies [4, 6] often use the following empirical 
formulas [1, 2]:
 (1)
In which:
ξ0 - Gear ratio of the powertrain.
We see that the determination of γ
m
 according to 
 201.04 0.0025mg x= +
Reviewer: 1. Assoc.Prof.Dr. Tran Van Nhu 
 2. Assoc.Prof.Dr. Le Van Quynh
LIấN NGÀNH CƠ KHÍ - ĐỘNG LỰC 
55Tạp chớ Nghiờn cứu khoa học, Trường Đại học Sao Đỏ, ISSN 1859-4190, Số 1 (68) 2020
formula (1) has not included the specific structural 
characteristics of the engine and the powertrain 
of the vehicle. The experimental coefficients in (1) 
are fixed, so there is not enough basis to be able 
to choose an appropriate vehicle. Moreover, in 
specialized software that simulates the dynamics 
of vehicles such as GT-Drive, Simdriveline in 
Matlab/Simulink. It is necessary to have input 
about inertia moment parameters of each cluster 
such as engine, gearbox, cardan shaft, active 
bridge, wheel [10, 11].
Accurate and detailed determination of the rotating 
mass coefficient γ
m
 according to the characteristics 
of the vehicle is difficult because it is necessary 
to identify inertia moment of many details in the 
structure of crankshaft mechanism, drivetrain 
system and tires. These details have a complex 
structure; some of them have heterogeneous 
materials and material distribution. Today, along 
with the development of simulation software 
(SolidWorks, Catia, Inventor...), the calculation of 
the inertia moment of the details is easier when 
there are sufficient structural parameters and 
their materials. The rotating mass coefficient is 
determined by calculation (theoretically) as above 
should also be checked and compared with the 
rotating mass coefficient determined experimentally 
with vehicles when operating on roller testing 
platforms.
This paper presents the results of the research on 
determining the detailed rotating mass coefficient 
of Hyundai Starex cars by theory (using Inventor 
software combined with the measurement data 
set for dimensions, the volume of related details) 
combined with the experiment (on the roller testing 
platform, the active wheel of Hyundai Starex is 
forced to rotate by the roller of the testing platform). 
The research results are used as input parameters 
for the model of linear motion simulation of Hyundai 
Starex cars [5].
2. THEORETICAL BASIS FOR DETERMINING 
THE ROTATING MASS COEFFICIENT
The influence of rotating mass coefficient on the 
driving motion of the vehicle is determined by the 
formula [1]:
 (2)
In which:
γ
m
 - The rotating mass coefficient;
F - Traction at active wheels;
∑R - total drag of the road and air;
m - vehicle mass; 
a - car acceleration.
In formula (2), is determined by formula [1]:
(3)
In which:
I
w
 - moment of inertia of the active wheel;
I
1
, I
2
,...I
n 
- moment of inertia of component rotating 
masses with corresponding gear ratios;
ξ1, ξ2,...ξ3 rbx - rolling radius of wheels; 
I - rotating mass coefficient of total rotating 
components from the engine to the active wheel.
According to [9], rotating mass coefficient ( zI ) for 
the axis of rotation of any solid object is determined 
by the formula:
(4)
In which:
r - turning radius of the differential mass dm, m; 
r - density of material, kg/m3; 
dV - the volume of differential mass dm, m3.
For components with relatively simple structures 
(cardan shaft, semi-axle, active wheel), Inventor 
software will be directly used for calculation and 
determination of rotating mass coefficient. For 
complex assemblies (crankshaft mechanism 
structure, gear box) will use a combination of 
calculation results from Inventor with the theoretical 
formulas to determine inertia moment.
Inertia moment of the engine eI is determined by 
the formula, [8]:
2( )e cgi fw c cr c cyl fwI I I m m R n I= + = + + (5)
With:
cgiI - inertia moment of crankshaft and parts 
mounted on the shaft, [kg.m2]; 
fwI - inertia moment of flywheel, [kg.m2]; 
cm - Shaft mass, [kg]; 
crm - Big part volume, [kg]; 
cR - turning radius of crankshaft, [m]; 
cyln - Engine cylinder number.
The inertia moment of a gearbox is determined by 
the formula [12]:
 mF R mag- =ồ
 2 2 2w 1 1 2 2
2 2 2 2 21 ... 1n nm
bx bx bx bx bx
I I I I I
mr mr mr mr mr
x x xg = + + + + + = +ồ ồ ồ ồ
 2 2. . .zI r dm r dVr= =ũ ũ
NGHIấN CỨU KHOA HỌC
56 Tạp chớ Nghiờn cứu khoa học, Trường Đại học Sao Đỏ, ISSN 1859-4190, Số 1 (68) 2020
With: 
II - inertia moment of the primary shaft of gearbox 
(clutch shaft), [kg.m2];
III - inertia moment of intermediate axis, [kg.m2]; 
ai - the gear ratio of the gear pair always matches 
the gearbox;
zkI - inertia moment of plain gear on secondary 
shaft, [kg.m2];
ki - transmission ratio of gearbox to gear pair of 
k gear;
m - the number of plain gears on the secondary shaft;
lI - inertia moment of reverse gear, [kg.m2]; 
li - the gear ratio of the number of reverse gears 
is calculated from the primary shaft of the gearbox 
to the regular reverse gears that are dynamically 
related to the gears on the intermediate shaft.
3. RESULTS OF DETERMINING THE ROTATING 
MASS COEFFICIENT
3.1. According to the theoretical method
The object of the study is the engine and powertrain 
of the Hyundai Starex CVX (model 2008) with the 
main specifications shown in Table 1:
Table 1. Main specifications of Hyundai Starex, [14]
No Parameter Unit Value
1
Engine (Model: 
D4CB 2.5 TCI-A)
Diesel, 4-stroke, 4-cylinder, 
1-line, VGT turbocharger, 
using Common Rail-type 
injection system
2
Vehicle weight 
- Front axle
- Rear axle
kg 2,285
1,235
1,050
3
Base length 
ì Width m 3,2 ì 1,920
4 Gearbox ratios -
5
Gear 1 4,393
Gear 2 2,306
Gear 3 1,356
Gear 4 1,0
Gear 5 0,763
6 Tire radius m 0,3535
Due to the lack of detailed design documents of 
the crankshaft mechanism, drivetrain system, the 
author chose to directly determine the parameters 
of interest on the actual details of the engine and 
the vehicle with an appropriate measuring device. 
The results of building a 3D drawing of the main 
components in the crankshaft mechanism structure 
of the D4CB 2.5 TCI-A engine in Inventor software 
are shown in Figure 1. 
Figure 1. Figure (3D) key details of the crankshaft 
mechanism structure in 2014 Autodesk Inventor 
software
The results of calculation and determination of 
the inertia moment of the crankshaft mechanism 
and drivetrain system of Hyundai Starex by the 
theoretical method are presented in Table 2.
Table 2. Results of calculating the inertia moment 
of the crankshaft mechanism and drivetrain system
No Inertia moment Unit Value
1 Inertia moment of engine, 
eI
kg.m2 0,75
2
Inertia moment of transmission at 
gear 1, 1hI kg.m
2 0,0079
3
Inertia moment of transmission at 
gear 2, 2hI kg.m
2 0,0083
4
Inertia moment of transmission at 
gear 3, 3hI kg.m
2 0,0088
5
Inertia moment of transmission at 
gear 4, 4hI kg.m
2 0,0077
6
Inertia moment of transmission at 
gear 5, 5hI kg.m
2 0,0085
7 Inertia moment of cardan shaft, pI kg.m2 0,01152
8 Inertia moment of drive shaft, 
dI
kg.m2 0,01389
9 Inertia moment of half shaft, dsI kg.m2 0,003
10 Inertia moment of wheel, 
wI
kg.m2 1,26
Combining the data in Table 2 with formula (3) we 
will determine the total inertia moment and rotating 
mass coefficient of Hyundai Starex car with different 
manual numbers as shown in Table 3.
 2 2 2
1
m
h I II a zk k l l
k
I I I i I i I i- - -
=
= + + +ồ (6) 
LIấN NGÀNH CƠ KHÍ - ĐỘNG LỰC 
57Tạp chớ Nghiờn cứu khoa học, Trường Đại học Sao Đỏ, ISSN 1859-4190, Số 1 (68) 2020
Table 3. Total inertia moment and rotating mass 
coefficient determined by theory
No Specs Unit Gear 1 Gear 2 Gear 3 Gear 4 Gear 5
1
Total 
inertia 
moment, I
LT
kg.m2198,11 55,62 23,61 19,23 18,4
2
I
e
/I
LT
% 0,379 1,348 3,177 3,900 4,076
 I
h
/I
LT
% 0,004 0,015 0,037 0,040 0,046
 I
p
/I
LT
% 0,006 0,021 0,049 0,060 0,063
I
d
/ I
LT
% 0,007 0,025 0,059 0,072 0,075
 I
ds
/I
LT
% 0,002 0,005 0,013 0,016 0,016
I
w
/ I
LT
% 0,636 2,265 5,337 6,552 6,848
3
Rotating 
mass 
coefficient, 
γ
mLT
1,70 1,194 1,082 1,067 1,064
From Table 2 and Table 3, we see: Inertia moment of 
the active wheel accounts for the largest proportion 
in the total inertia moment (because the active wheel 
has the largest mass and turning radius) compared 
to the remaining components. However, according 
to formula (3), the impact of engine inertia moment 
on the total inertia moment is the largest because 
in addition to the engine having a relatively large 
inertia moment ( eI = 0,75), the ratio of engine to 
active wheel is the largest, especially when at 
No. 1, the transmission ratio of the powertrain is the 
largest (ξso1= 4,393 ì 3,615 = 15,881).
3.2. According to the experimental method
3.2.1. Experimental equipment
The experiment of determining the rotating mass 
coefficient of Hyundai Starex is conducted on the 
48 “roller test platform (at Chassis Dynamometer 
at Light Duty Test Cell of National Motor Vehicle 
Emission Test Center/Vietnam Register) with a 
layout. as shown in Figure 2. Main specifications of 
48” roller testing platform (AVL Zửllner GMBH) are 
shown in Table 4. 
During the test, the vehicle speed - v (km/h), the 
pulling power of the roller P (kW), the pulling force 
of the roller F (N) are determined directly from 
the roller test platform. Other parameters such as 
the external torque exerting on the active wheel 
- M (Nm), the angular acceleration of the active 
wheel -e (m/s2) are determined indirectly from the 
measurement parameters ( F , v ) of the platform.
Inertia moment of total empirical measurement is 
determined by the formula, [3]:
Where:
M
t
, M
g
,
e
t
, e
g
- the external torque and the active 
wheel angular acceleration when the roller 
accelerates and decelerates.
Figure 2. General layout of Chassis Dynamometer 
at Light Duty Test Cell-NETC
Table 4. Main specifications of 48 roller test 
platform, [7]
No Specifications Unit Value
1
Maximum weight of active 
bridge kg 4500
2 Test vehicle weight kg 454ữ5448
3 Inertial mass of 2 rollers kg 1678
4 Maximum acceleration m/s2 5,3
5 Maximum pulling force N 5870
6 Maximum test speed km/h 200
3.2.2. The order of conducting experiments
To determine the inertia moment, the roller test 
platform is controlled to operate in a “passive” mode 
(using the roller of the testing platform to turn the 
vehicle’s active wheel), the engine does not start, 
the clutch is in the state closed, and the position 
of the gear varies from 1 to 5. In each hand, use 
the rollers of the testing platform to pull the wheel 
to actively accelerate to the speed max
3
v
, and then 
disconnect the power to the rollers to let the wheel 
actively decelerate to 0 km/h.
3.2.3. Experimental results
After determining the external torque values and 
acceleration of the active wheel angle, proceed to 
select the values M
t
, M
g
,
e
t
, e
g
 at the time that the 
active wheel angular velocity when accelerating 
and decelerating is equal [3]. The empirical results 
determine the values M
t
, M
g
,
e
t
, e
g 
corresponding to 
the transmissions are presented in Table 5.
 t gTN
t g
M MI e e
-
=
+
 (6)
NGHIấN CỨU KHOA HỌC
58 Tạp chớ Nghiờn cứu khoa học, Trường Đại học Sao Đỏ, ISSN 1859-4190, Số 1 (68) 2020
Table 5. Experimental results to determine M
t
, M
g
,
 e
t
, e
g
No Parameter Unit Gear 1Gear 2Gear 3Gear 4Gear 5
1
External 
torque, when 
accelerating, M
t
Nm 3,478 853 332 195 166,6
2
External 
torque, when 
decelerating, M
g
Nm 8,9 1,58 2,47 4,71 6,97
3
Acceleration 
of wheel 
angle when 
accelerating et
rad/
s2
8,602 7,61 6,97 4,76 4,3
4
Acceleration 
of wheel angle 
when slowing 
down,
e
g
rad/
s2
8,601 7,62 6,98 4,81 4,28
The value of the total and rotating mass coefficient 
determined by empirical method is shown in Table 6.
Table 6. Inertia moment of total and rotating mass 
coefficient determined by experiment
No Parameter Unit Gear 1 Gear 2Gear 3Gear 4Gear 5
1
Total inertia 
moment, I
TN
kg.m2 201,64 56,01 23,64 19,84 18,6
2
Rotation mass 
coefficient,
γ
mTN
1,71 1,196 1,083 1,069 1,065
4. COMMENTS
In Table 7 presents the results of determining 
inertia moment, rotation mass coefficient with 3 
cases: Calculating based on empirical formula 
(1); Theoretical calculations (Table 3) and 
experimentally on roller test platforms (Table 6). 
We see:
Table 7. Summary of the results of determining 
inertia moment and rotation mass coefficient on 3 
alternatives
No Parameter Unit Gear 1 Gear 2 Gear 3 Gear 4 Gear 5
1
Total inertia 
moment 
(experimental),
 I
TN
kg.m2 201,64 56,01 23,64 19,84 18,6
2
Total inertia 
moment 
(theoretical),
I
LT
kg.m2 198,11 55,62 23,61 19,23 18,4
Compare 
I
LT
 to I
TN
% 1,75 0,7 0,13 3,07 1,08
No Parameter Unit Gear 1 Gear 2 Gear 3 Gear 4 Gear 5
3
Total inertia 
moment total 
(experience), I
KN
kg.m2 191.45 61.03 28.57 20.75 16.85
Compare
 to 
I
KN
 I
T
% 5,05 8,96 20,85 4,59 9,41
4
Rotation mass 
coefficient 
(theoretical), γ
mTN
1,71 1,196 1,083 1,069 1,065
5
Rotation mass 
coefficient 
(theoretical), γ
mLT 
1,70 1,194 1,082 1,067 1,064
Compare γmLT to γmTN % 0,58 0,17 0,09 0,19 0,09
6
Rotation mass 
coefficient 
(experience), γ
mLT
1,67 1,21 1,1 1,07 1,06
Compare
γ
mTN to γmTN % 2,34 1,17 1,66 0,09 0,47
- The value of inertia moment and rotation mass 
coefficient tends to decrease when moving to a 
higher gear.
- At gear 1, the inertia moment and rotation mass 
coefficient spin a lot bigger than at gear 5 in all 3 
options.
- Rotation mass coefficient when determined 
experimentally has difference value when 
determined by theory. Specifically, the errors in 
turn are 0,58%, 0,17%, 0,09%, 0,19%, and 0,09% 
at gears: 1, 2, 3, 4 and 5. The cause of this error 
is mainly due to the theoretical calculation ignoring 
the compression pressure values in the engine 
cylinder, but when experimented, the engine 
cylinder still has the compression pressure (not 
burning). In addition, ignoring other factors such as 
auxiliary parts of rotation in the engine, wheel slip to 
the road surface, tire pressure,...
- Rotation mass coefficient when determined 
experimentally has a different value from the 
empirical formula. Specifically, the errors are 
respectively 2,34%, 1,17%, 1,66%, 0,09%, 0,47% 
at gears: 1, 2, 3, 4, and 5. The main cause of 
errors is due to the fact that when determining 
by empirical formula, only the transmission ratio 
of the powertrain is concerned, not the structural 
characteristics of each vehicle.
LIấN NGÀNH CƠ KHÍ - ĐỘNG LỰC 
59Tạp chớ Nghiờn cứu khoa học, Trường Đại học Sao Đỏ, ISSN 1859-4190, Số 1 (68) 2020
5. CONCLUSION
The paper has identified the total inertia moment 
and rotation mass coefficient of Hyundai Starex 
CVX by theory (on the basis of using Inventor 
software) and experiment (on roller test platform), 
corresponding to each transmission number of 
the gearbox. 
The detailed value of inertia moment of parts and 
rotation mass coefficient calculated by Inventor 
software has high accuracy and will be used 
as input parameters for Hyundai Starex’s linear 
motion simulation software such as GT-Drive, 
Matlab Simulink.
REFERENCES
[1] J.Y,Wong (2008), Theory of ground vehicles, 
John Wiley &Sons, Inc.
[2] Thomas D. Gillespie (2014), Fundamentals 
of Vehicle Dynamics, Society of Automotive 
Engineers Inc.
[3] Xerghờiev L.V (1990), Lý thuyết xe tĕng (Tài 
liệu dịch), Học viện KTQS.
[4] Nguyễn Đỡnh Tuấn, Phạm Trung Kiờn, 
Nguyễn Hoàng Vũ (2012), Phỏt triển mụ 
hỡnh mụ phỏng động lực học chuyển động 
thẳng của xe tĕng trong Matlab/Simulink/
SimDriveline, Khoa học và Kỹ thuật, Học 
viện Kỹ thuật Quõn sự.
[5] Nguyễn Hoàng Vũ (2014), Thuyết minh đề 
tài NCKH & PTCN cấp Quốc gia “Nghiờn cứu 
chế tạo thử nghiệm ECU phự hợp cho việc 
sử dụng nhiờn liệu diesel sinh học với cỏc 
mức pha trộn khỏc nhau”, mó số ĐT.08.14/
NLSH, thuộc Đề ỏn phỏt triển nhiờn liệu sinh 
học đến nĕm 2015, tầm nhỡn đến nĕm 2025.
[6] Nguyễn Hoàng Vũ (20120), Bỏo cỏo tổng kết 
đề tài NCKH & PTCN cấp Quốc gia “Nghiờn 
cứu sử dụng nhiờn liệu diesel sinh học (B10 
và B20) cho phương tiện cơ giới quõn sự”, 
mó số ĐT.06.12/NLSH, thuộc Đề ỏn phỏt 
triển nhiờn liệu sinh học đến nĕm 2015, tầm 
nhỡn đến nĕm 2025.
[7] AVL Zửllner GMBH, Chassis Dynamometer 
System for Exhaust Emission Analysis.
[8] Raffaele Di Martino (2005), Modelling and 
Simulation of the Dynamic Behaviour of 
the Automobile, PhD thesis in Mechanical 
Engineering, University of Salerno.
[9] Aleksander UBYSZ (2010), Problems of 
rotational mass in passenger vehicles, 
Department of Vehicle Construction, Faculty 
of Transport, Silesian Technical University, 
Poland.
[10] GT-SUITE (2011), Vehicle Driveline and HEV 
tutorial, Gamma Technologies, Inc.
[11] Matlab&Simulink, SimDriveline™ User’s 
Guide, The Mathwork, Inc, 2010.
[12] Lờ Vĕn Tụy (2012), Thử nghiệm và mụ phỏng 
ụ tụ trờn bệ thử động lực học, Đại học Bỏch 
khoa Đà Nẵng.
[13] 
[14] Hyundai Motor Company, Technical 
Specifications for H1 – Bus 
NGHIấN CỨU KHOA HỌC
60 Tạp chớ Nghiờn cứu khoa học, Trường Đại học Sao Đỏ, ISSN 1859-4190, Số 1 (68) 2020
THễNG TIN TÁC GIẢ
 Vu Thanh Trung
- Summary of training and research process (time of graduation and training and research 
program):
+ 2006: Graduated from University with a major in Dynamic Mechanical Engineering
+ 2011: Graduated Master degree in Automotive Engineering
- Summary of current Job: Lecturer, Faculty of Automotive, Sao Do University
- Areas of interest: Automotive dynamics; new energy, alternative fuel in vehicle; Control 
engineering application for automotive systems.
- Email: vuthanhtrung286@gmail.com 
- Phone: 0968567683
 Ngo Thi My Binh
- Summary of training and research process (time of graduation and training and research 
program):
+ 2006: Graduated from University with English major
+ 2010: Graduated Master of English major
- Summary of current job (positions, offices): Lecturer, Department of Tourism and Foreign 
Languages, Sao Do University
- Areas of interest: Basic English, English for Automotive Engineering Technology, English for 
Business and Tourism.
- Email: tienganhmybinhsd@gmail.com
- Phone. 0984188873
            Các file đính kèm theo tài liệu này:
y_xac_dinh_he_so_khoi_luong_quay_phuc_vu_viec_mo_phong_dong.pdf